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1. Introduction

Application of a Bragg acousto-optic cell in modern opto-elctronic communication or measurement systems [1]

often requires small phase distortions due to this cell. For instance, for broadband signals, nonlinearity of its phase

response can result in considerable signal distortions, causing a noise increase or even a mistakenly transmitted

word. In case of optical systems, a wave-front distortion caused by a Bragg cell, can significantly deteriorate their

parameters. That is why the investigation of phase characteristics (phase response) of Bragg cells is practically

important.

The present work is aimed to establish the relation of phase-response characteristics of Bragg cells with their

constructive and technological parameters, as well as to study these characteristics experimentally.

One can imply different versions of a Bragg cell phase response depending on its application in a real system.

To formalize the task, let us consider signal conversions in a heterodyne system with a Bragg cell.

Fig. 1.1 shows a general scheme of a Bragg cell use in a coherent opto-electronic system. An incident light wave

Ei(r,t) is converted by a Bragg cell into a diffracted (signal) wave EB(r,t,ω). The latter is added to the reference light

wave Er(r,t) on a beamcombiner. As usual, here r is a radius-vector, t is time, ω=2πf,  f  is a frequency of an input

radio-signal.

Having passed through the optical system of a photoreceiver (a lens in Fig. 1.1), both waves interfere on a

photo-sensitive surface of a photodetector. At a harmonic input signal uin (t)∼cos(ωt +ϕin), the frequency of a

diffracted light wave differs from the frequencies of incident and reference light waves by a value ω. Therefore an

output photodetector signal will be harmonic too: uout (t)∼cos(t +ϕout).

It should be noted that there is no need to consider a concrete optical scheme in a general statement of problem.

It is sufficient to suppose that a reference light beam is formed so to provide the wave-front matching condition [2, 3]

for reference and signal light waves within overall frequency range. It is easily realized using a divergent reference

beam [1, 4].

It is convenient to separate the problem of investigation of a Bragg cell phase-response onto two independent

but connected parts. First, the whole opto-electronic device shown in Fig. 1.1 can be considered as a certain

equivalent quadripole [4]. A non-dimensional transfer function of this quadripole

TF i U U TF i( ) ( ) / ( ) ( ) exp( ( ))ω ω ω ω ϕ ω= =out in , (1.1)

uin(t)~ cos(ωt+ϕin)

EB(r,t,ω)
K

Ei(r,t)

s(xB,t,ω)

Diffracted
(signal) beam

Bragg
cell

Incident
beam

Sound
wave

Er(r,t)

Beam-
combiner

Reference
beam

xB

Eout(r,t,ω)

The optical system
output plane

Lens

Photodetector

uout(t)~cos(ωt+ϕout)

xout

Fig.1.1. Signal conversions in a coherent heterodyne system with a Bragg cell.
Ei(r,t), EB(r,t,ω), Er(r,t) - incident, diffracted and reference light waves correspondingly; K - sound wave

vector. uin (t), uout (t) - input (or driving) and output signals.
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where Uin(ω) and Uout(ω) are complex magnitudes of input and output signals at frequency ω, includes the phase

response ϕ(ω) of the whole device which, as a rule, is an object of interest for a designer of integrated opto-electronic

communication systems.

Secondly, the interest can be focused only on the wave-front distortions of an incident light wave Ei(r,t)

inserted by a Bragg cell. Taking into account that these distortions can depend on frequency of a driving signal, it is

reasonable to consider an "acousto-optic" transfer function

AOTF i E E AOTF i( ) ( , ) / ( ) ( ) exp( ( ))ω ω ω ϕ ω= =B i AOr r , (1.2)

where Ei(r,t) and EB(r,t,ω) are complex magnitudes of incident and diffracted light waves at a frequency of a driving

electrical signal ω. In fact, the phase response ϕ? O(ω) displays the wave-front distortions of an incident light beam

depending on a sound frequency. This characteristic is important for designers of optical systems where a Bragg cell

is used as a deflector, especially in phase-sensitive systems, rather than a device for data entry in an optical channel.

Evidently, the distortions of a phase-response characteristic ϕAO(ω) must depend on the sound wave s(xB,t,ω)

characteristics and be incorporated in the distortions of a overall characteristic of ϕ(ω) as an additive component.

Focusing on the Bragg cell application for coherent communication systems, we will concentrate on the studies of

ϕ(ω) characteristic analyzing other "particular" characteristics (e.g., ϕAO(ω)) only to get a deeper insight into

mechanisms of physical processes in the system and to clarify reasons of arising phase distortions.

Thus, we have defined a phase response ϕ (ω) which is a subject of interest in the present work and, in fact,

formulated an approach to measure this characteristic. Undoubtedly, this definition enables to develop a

measurement procedure and then to obtain corresponding experimental results which allow to compare various Bragg

cells. How these results should be used in practice depends on concrete application.

2. Calculation of a photodetector output phase (basic results of the first stage report)

To find an acceptable level of wave-front distortions of a signal light wave in a heterodyne optical system with a

Bragg cell, the phase of the photodiode output depending on those distortions analyzed at the first stage of the

work. Optical incident and reference beams with a Gaussian profile had been considered. An output signal phase had

been investigated for different parameters of a Bragg cell in a regime of low acousto-optic efficiency. It was

established that sound decay and truncation of an incident light beam did not practically affect the output

photocurrent phase. But in some cases, irregular wave-front perturbations in the photodetector plane can result in

considerable phase distortions of an output signal.

Briefly let us consider a way these results were obtained. The complex magnitude of an output signal regular

component at some frequency f in one-dimensional case (i.e., after replacing r→xout) is [2]

U E x E x x
a

a

out out out r out out
-

d= ∫ ( ) ( )* , (2.1)
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where Eout(xout) and Er(xout) are complex magnitudes of signal and reference light waves in the output plane of an

optical system (see Fig.2.1), 2a is a size of a photodetector.

Not accounting for some unessential constant term, one can write the expression for complex magnitudes [5,6]:

E x x x i x x D

D x ix x i x

out out 0 out
2

out 0

out outerf erf

( ) exp[( / ) / ] exp( / ) exp[ ( / / )]

/ / ,

= − ⋅ − ⋅ − − −

× − + +













 − − + +























α α α

π α α

2

0 0

4 2 2 2 2

2 2
2

2
2 (2.2)

( )[ ] ( )[ ]{ }E x x D x i x x i xr out out
2

r r out r outerf erf( ) exp( / ) / / ,= − − + − − +2
2

2 20 0

π
(2.3)

where the lines above variables xout, α, x0, and D denote that they are normalized on corresponding intensity (1/e)

radii rout or rB of Gaussian beams in the output and Bragg cell planes. Here α is a frequency-dependent exponential-

decay constant of acoustic intensity, D is an aperture of a Bragg cell, Dr is an objective aperture of the reference

optical channel. The offset x0 is included to allow the optical beam to be optimally placed within the Bragg cell

aperture to increase the efficiency. The offset x0r here, in fact, is always equal to Dr/2. Error function

erf( dx t t
x

) exp( )/= −− ∫2 1 2 2

0

π .

3. Designing of a Bragg cell with small phase distortions

3.1 Common considerations
To design a Bragg cell with small phase distortions to be used in an acousto-optic signal processing
system, it is necessary to study how its parameters are connected with an output signal phase.
Usually a Bragg cell design procedure supposes that its construction parameters are to be chosen to
achieve required technical characteristics. These parameters are the aperture of a Bragg cell D, the
transducer length L and height H, and also the single crystal parameters: index of refraction n, sound
velocity v, sound decay constant α, and figure of merit M2. An operating frequency f0, bandwidth ∆f,
efficiency η and resolution N have to be found as a result.
In  Section 2, it was shown that a Bragg cell aperture and sound decay do not affect an output phase if
there are no irregular perturbations of the diffracted light wave-front. Such perturbations can be caused

FF

xB

D

⇒

Bragg cell

incident beam

⇓ Dr

reference beam

output
plane

photodetector

2a

uout(t)
2rout

xout

 EB(xB)

Eout(xout)
 Er(xout)

Fig. 2.1. The receiving part of a laser heterodyne system with a Bragg cell
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by various factors: non-homogeneity of optical properties of used material or technological inaccuracy
of a Bragg cell fabrication. As a rule, these factors can be excluded if a technology is properly
developed. But there is a physical reason which can not be excluded from consideration for any
technologies used. This is temperature non-homogeneity which arises in a Bragg cell because of sound
wave decay [8]. Obviously, it will be minimal if an acoustic power Pa is minimal, i.e. it is desirable to
have an acoustic power as less as possible. On the other hand, at the same acoustic power the greater
acoustic loss is, the greater an absorbed part Pabs of acoustic power is, i.e., a Bragg cell material should
be chosen with a minimum sound decay constant α and a maximum figure of merit M2.
Often these requirements are contradictory: materials with a large figure of merit M2 have also a large
sound decay constant α. Therefore it is convenient to compare different materials considering the ratio
of absorbed power to efficiency Pabs/η: the less this ratio is, the more a considered material is suitable.
Taking into account that Pabs=Pa(1-e-αD) and η=sin2[π/λ(PaLM2/2H)1/2] [8], in case of low efficiency
one can write

P D
M

H
L

abs

2η
λ
π

α
= 





− −
⋅

2 1 2exp( ) , (3.1)

α αD D= , where normalized variables α and D have been defined in Section 2. When a Bragg cell is to
be of high efficiency, the αD  value has to be rather small. In fact, as it will be shown below, it has to be
certainly less than 0.1. Under this condition one can write exp(-αD)≈1-αD, and in a first approximation
the expression (3.1) becomes

P
M

H
L

Dabs

2η
α

~ ⋅ ⋅
2 . (3.2)

That is, the simple ratio α/M2 is a criterion to compare different materials: a better material has a less
value of α/M2. One can also see that the expression (3.2) is useful to estimate an influence of
constructive parameters: as usual, the ratio L/H should be maximum, but it is desirable the aperture D to
be smaller to reduce the absorbed power. Evidently, it is desirable also to decrease an operating
frequency f0 to reduce acoustic loss.
What has been said is related to any Bragg cell. In some cases there exist additional factors causing
phase distortions. For example, in a Bragg cell on TeO2 the index of refraction for diffracted light wave
depends on the angle, i.e. some frequency dependent error arises which is connected with a bandwidth
∆f and should be taken into account. This error will be considered below.

3.2 Designing of a Bragg cell for a given efficiency
As it was shown in Section 2, in a heterodyne system, phase distortions caused by a Bragg cell weakly
depend on acoustic loss and a Gaussian light beam truncation even if there are additional irregular phase
perturbations of the diffracted light beam. Therefore its diffraction efficiency should be considered as a
basic criterion for a design procedure. The efficiency value reduced because of truncation and acoustic
loss can be calculated directly [6]:

η η α α

α α

T L AO 0

erf erf
= −

+ −





− −





exp( / )2
0 0

4
2 2

2
x

D x x
. (3.3)

At given values of α  and D , the maximum diffraction efficiency ηTLm will be reached if x0  is equal to
some optimal value x 0opt which can be found from the equation [6]
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( )1
2

2

2 2 2
0

2
0

2

0 0

π
α

α

α α α

exp ( / ) exp ( )

.

− − − − + −













 +

+ + −





− − +













 =

x D x

D x x

0

erf erf
(3.4)

Using (3.3) and (3.4), one can calculate a maximum reached efficiency of a Bragg cell as a dependence
η

TLm
( )D  considering the α  value as a parameter and assuming x x0 0= opt . Such dependencies are shown

in Fig. 3.1. It is clearly seen from the figure that a desirable value of ηTLm can be reached only if α  is
less and D  is more than certain values. Let us estimate what that means for a Bragg cell with acoustic
loss equal to α [dB/µsec] at some operating frequency. Taking into account that αD =αD and
|10lg(exp(- αD ))|=10 αD lge=4.34αD, one can calculate a real aperture

D=4.34⋅10-6 αD v/α[dB/µsec]. (3.5)

Then a maximum acceptable radius of a Gaussian light beam

rB=D/ D =4.34⋅10-6v α /α[dB/µsec]. (3.6)

A Bragg cell resolution

N=∆θ/δθ, (3.7)

where the scanning angle ∆θ=(λ/vcosθB)∆f, θB is a Bragg angle. An angle divergency of a light beam
δθ depends on the aperture D, on the light distribution across it, and on the criterion defining a light spot
angle size. For an uniform distribution δθ=λ/D by the Rayleigh criterion and

N=∆fD/vcosθB. (3.8)

In case of Gaussian distribution, light spots will be resolvable by Rayleigh [8] if δθ=µ(w)λ/2rB, where
µ(w) is a parameter determined by a degree of a beam truncation which can be calculated at known
ratio w=D/2rB. For example [8], µ=1.16 if w=1, and µ=0.86 if w>>1. Thus, in this case using (3.6)
and (3.7), one can write the resolution

NGR=8.68⋅∆f⋅[MHz] α /µ(w)α[dB/µsec]cosθB. (3.9)

Noting now the quantity D /2 is exactly equal to the ratio w,
one can say that a given value of the required efficiency ηTLm

as well as a value of a sound decay constant α will determine
a maximum resolution because it determines a value of D .
Let us estimate, for example, parameters of a Bragg cell with
a given efficiency ηTLm≥0.9. This value of efficiency can be
reached only if α ≤0.058 and D ≥3.7 (see Fig. 3.1). Taking
α =0.058, D =3.7, cosθB≈1 and using (3.5), (3.6) we obtain
a convenient expression to calculate a Bragg cell with
efficiency ηTLm=0.9:

1 2 3 4
0

0.2

0.4

0.6

0.8

1

D

ηTLm( )D

α = 0 058.

0.2
0.4

0.6

Fig. 3.1. Dependence of the overall
efficiency of a Bragg cell on its normalized

width at various sound decay factor α . The
required value ηTL=0.9 is reached only at

α ≥ 0 058. , D ≥ 37. ; x 0opt =1.519 in this case.
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D0.9=9.31⋅10-7v/α[dB/µsec];      rB0.9=2.52⋅10-7v/α[dB/µsec]. (3.10)

In this case the ratio w=3.7/2=1.85, that is the value of a parameter µ(w) should be within the range
0.86-1.16. Calculations give µ=0.89 at α =0.058, D =3.7, and x0 =1.519. Then from (3.9) we obtain

NGR0.9≈0.566⋅∆f[MHz]/α[dB/µsec]. (3.11)
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3.3 Designing of a Bragg cell on TeO2 with operating frequency f0=100 MHz
Let us consider now a Bragg cell on TeO2 with operating frequency f0=100 MHz, bandwidth ∆f=30
MHz and efficiency η=0.9 which has to be designed. A complete design procedure for such a Bragg
cell is rather unwieldy and requires numerical simulation to be applied therefore we simply point out a
reference [9] where it is described in detail. Using this procedure, the Bragg cell was designed to get
following parameters:
light wavelength — λ=0.633 µm; efficiency — η=0.9; frequency range — 85-115 MHz; other
parameters had been taken to be arbitrary.
The designed (calculated) Bragg cell had the parameters as follows:
efficiency — η=0.9 at acoustic power 130 mw; frequency range — 81-116 MHz; output diffracted
angles θ2out (from the optic axis)— -0.92°…+0.94°; sound velocity — v=686 m/sec; construction
angles (see Fig.3.2) — αN=8.80° and β=4.12°; the transducer size — length L=3 mm and height H=2
mm.

Calculated frequency characteristic of the
Bragg cell is presented in Fig. 4.6,
Section 4 (curve 1).
Fig. 3.2. gives a sketch of its construction.
The input face is tilted at the angle
β=4.12° to provide a diffracted light
beam parallel to the optic axis at some
frequency (the calculated value was 98.3
MHz) in the middle of the frequency
range.
The Bragg cell aperture and a Gaussian
parameter of an incident light beam can
be calculated from the condition η=0.9

using the relationships in the previous section. Having α=0.18 db/µsec at 100 MHz [6], and taking
ηTLm=0.9 as a given value, from expressions (3.10)-(3.11) one can find for a designed Bragg cell:
Aperture — D=3.19 mm, Gaussian light beam parameter — rB=0.86 mm, resolution — NGR≈94 at the
bandwidth ∆f=30 MHz.
Thus, it is necessary to increase ∆f to get the resolution NGR>100. It results in an acoustic power
growth because of L decrease and, hence, absorbed power will also increase in turn (see the expression
(3.2)). That is, the simultaneous requirements to get a high efficiency and resolution, and to reduce
wavefront perturbations are contradictory.
In the designed Bragg cell index of refraction for diffracted light beam depends on the angle of
diffraction θ2 (see Fig. 3.2), i.e. on its direction related to the optic axis [001]. Taking this fact into
account, it was found using the design procedure mentioned above, that a phase difference of diffracted
light wave at boundary values of frequency range did not exceed 16° at the light way length equal to 20
mm. As it was shown in Section 2, one can neglect such a value of a regular distortion.

L

K KP

transducer

optic axis

input light
beam

β
passed

light beam

diffracted
light beam

[001]

k2

k1

θ2

αN

[110]N

Fig. 3.2. Construction of a designed Bragg cell on TeO2.
k1 and k2- wave vectors of incident and diffracted light; K - wave vector
of sound; KP - Poynting`s vector of sound; N - normal to the transducer.
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3.4 Designing of a Bragg cell on GaAS
In many practical applications it is needed to have Bragg cells operating in the infrared range. A single
crystal GaAs of 43m symmetry is suitable to design such Bragg cells because of its comparatively large
value of M2 and not very large sound decay α. This single crystal is optically isotropic, so that it has no
frequency limitations except of those because of sound decay. In this case a design procedure is very
uncertain if one does not mean any concrete application. For this reason we will only give an example to
estimate in some way possible values of a Bragg cell parameters.
To chose a crystallographic orientation a phase distortions to be small let us estimate values of a
parameter α/M2 for different sound wave propagation directions.
For the longitudinal sound wave along the [110] direction the figure of merit M2[110]=104 is known [10,
11] as well as sound decay α[110]=22.5 dB/cm at f=1 GHz [11]. Thus, α/M2[110]=0.216 for this
direction.
For another suitable direction [111] the M2[111] value should be calculated. An effective photoelastic
constant for this direction [12]

peff=(p11+2p12+4p44)/3. (3.12)

Using data for photoelastic constants [13] p11=0.165, p12=0.28, p44=0.284, we find peff=0.243. Taking
values of sound velocity v=5.1⋅105 cm/sec, index of refraction n=3.4, and density ρ=5.3 g/cm3 [13] we
find M2[111]=135⋅10-18 sec3/g. Having for this case the α value equal to 15 dB/cm at 1 GHz [13], we
obtain the value of α/M2[111]=0.111<α/M2[110]=0.216.
Thus, following the criterion formulated above (see the expression (3.2)), one can assert the direction
[111] is more suitable to design a Bragg cell with small phase distortions. Below the calculation is made
of a Bragg cell on GaAs for λ=1.55 µm at the same operating frequency f0=100 MHz as the Bragg cell
on TeO2 designed earlier. The wavelength  λ=1.55 µm is chosen because, firstly, many various
semiconductor lasers for this wavelength are proposed by industry, and, secondly, the optical
attenuation in GaAs at this wavelength is small enough [13].
Taking the efficiency η=0.9 should be obtained and having sound decay expressed in α[dB/µsec] at
100 MHz is equal to 0.0765, one can directly use expressions (3.10), (3.11) to estimate parameters of
a designed Bragg cell. Then its parameters calculated are:
D=6.2 cm, rB=1.68 cm and NGR=222 at the bandwidth ∆f=30 MHz.
In this case, the transducer optimal length determined for the -4 dB level of an amplitude frequency
response, [8]

L≈1.56⋅v2n/∆f2λ. (3.13)

Using values of v, n, ∆f and λ pointed out above as given, we obtain the value of L=9.9 cm, i.e. the
transducer length is obtained very large. Calculations show that even at non-uniformity of -1dB it will be
greater than 3 cm. Thus, in a real device it can be chosen lesser to obtain a better uniformity of an
amplitude frequency response. An ultimate conclusion how to chose constructive parameters and
operating frequency of a Bragg cell on GaAs properly can be made only for a concrete application and
after some preliminary experiments.
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Some results obtained using (2.1)-(2.3) are presented in Fig. 2.2. The plots display what happens to an output

signal phase when the wavefront of an output optical signal Eout(xout) is perturbed by some "smooth irregular"

function ϕadd(xout). The function used in calculation is presented in Fig. 2.2, b. The limits of its variations are about

±90° that correspond to the wavefront distortions ~λ/4, where λ is a light wavelength. It was added to the function

arg(Eout(xout)) to form a perturbed function ′ =E x E x i xout out out out add out( ) ( ) exp( ( ))ϕ . The perturbed function obtained in

this way is presented in Fig. 2.2, a (solid red line), and c (its magnitude and phase correspondingly). A complex

magnitude E xout out( )  was calculated at D x= = =37 0058 1519
0

. , . .α and . (Reasons to chose such parameters of a

Bragg cell will be considered in Section 3). Complex magnitude E xr out( )  was calculated assuming Dr=D. Its phase

was taken to be equal to zero and its magnitude is presented in Fig. 2.2, a (dot blue line). An output electric signal

phase depending on the size of a photodetector ϕout(a)=argUout(a) is presented in Fig 2.2, d. One can easily see that an

output phase can have considerable distortions if a photodetector size is small (in the order of a light spot size in the

output plane). That may be important when a phtodiode array is used, and reference probes are narrower than a

signal mainlobe as it was considered in reference [1, p.119].
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Fig. 2.2 The output phase ϕout vs a photodetector size a in case of some irregular wave-front perturbation of a signal light
beam in the output plane.
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The performed analysis was related to the case when phase irregularities in the output plane had a smooth

character. Apparently, this case seems to be rather rare. Practically it is more probable that such irregularities occur in

the Bragg cell plane rather than in the output plane because of, perhaps, non-homogeneity of optical properties of a

used single crystal or technological inaccuracy of a Bragg cell fabrication. Such a case is considered below.

In Fig. 2.3, a, b the distribution EB(xB)1 is presented in the diffracted light beam just after a Bragg cell. It is

connected with the distribution Eout(xout) in the output plane by the Fourier transform because the Bragg cell and

output planes are located in the corresponding focal planes of a lens (see Fig. 2.1). In calculation, the magnitude

distribution EB(xB) (see Fig. 2.3, a) was obtained using the expression [6]

E x C x x x x D
B B 0 B 0 B

rect(( ) exp[( / ) / ]exp[ ( / ) / ] / ),= − − − +α α α2 24 2 2 2 (2.4)

                                                
1 Here arbitrary units (au) were used to count space coordinates. But they are the same in the pairs of plots: a-b and
c,d-e. Thus, the size of a photodetector can be related to a size of a light beam spot in the output plane.
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where C is a constant, and the asymmetric rectangle function (rect(x)=1 if 0<x<1, rect(x)=0 otherwise) truncates the

diffracted beam to within the width of the Bragg cell, which is assumed to have its transducer at the value xB=0 and

the end at the value xB=D. It was calculated at the Bragg cell parameters D x= = =4 0 202 2
0

, .α and .

Similarly to the previous case, the phase distribution had been constructed using some arbitrary "smooth

irregular" function argEB(xB) which was changed within the range ±50° (see Fig 2.3, b). A field in the output plane

Eout(xout) was calculated using Fast Fourier Transform (FFT), and its result is presented in Fig.2.3, c, d (magnitude and

phase). A reference beam Er(xout) was taken to be real and equal to unit in the output plane.

The calculation result using (2.1) is presented in Fig.2.3, e. It is similar to that obtained in the previous case (see

Fig.2.2, d), but a smooth character of a curve ϕout(a) has got broken. Apparently, one could expect that a complicated

character of the Eout(xout) distribution would result in considerable phase distortions of the output photocurrent. It

should be noted, however, that an actual level of output phase distortions is unexpectedly low. Its maximum value is

about 35° in spite of considerable phase variations on the photodetector surface (Fig 2.3, d). Of course, it is

connected with an averaging effect of the photoelectric conversion which is described by the integral in (2.1). Also it

is clearly seen that tne output phase decreases to zero when the size of a photodetector becomes a few times more

than a central light spot size.

In the way described above, the behavior of an output phase ϕout(a) was investigated at different parameters of

a Bragg cell:

1) α = = = = =0 192 0 96 2
0 0

, . , . , , /D x D D x D
r r r

;

2) α = = = = =0 30 15 2
0 0

, . , . , , /D x D D x D
r r r

;

3) α = = = = =0 433 192 0 96 2
0 0

. , . , . , , /D x D D x D
r r r

;

4) α = = = = =0 361 192 085 2
0 0

. , . , . , , /D x D D x D
r r r

; sound decay through the Bragg cell width is equal to 3

dB.

5) α = = = = =1199 1 92 0 47 20 0. , . , . , , /D x D D x Dr r r ; sound decay through the Bragg cell width is equal to 10

dB.

As a result, it was established that a Bragg cell aperture and sound decay practically do not affect an output

signal phase if a photodetector size is not considerably less than a central spot size.

Nevertheless, experimental investigations carried out in [5, 7], demonstrated qualitatively visible phase non-

uniformities in the diffracted light beam. Thus, further quantitative measurements are necessary to conclude whether

a Bragg cell application in opto-electronic or optical systems can result in considerable phase distortions.

4. Experiment

4.1 An experimental specimen

As an experimental specimen specially fabricated Bragg cell on TeO2 was used, which was designed in Section

3. Its construction is presented in Fig. 3.2. The constructive angles αN and β of the fabricated specimen were

performed within the ± 5 angle second accuracy. The shear-wave transducer was fabricated from the LiNbO3 plate

which was bonded to a TeO2 element by means of the vacuum diffusion welding, and then was grounded up to the

required thickness. The surface opposite to the transducer was tilted at some angle to the sound wave-front and

grounded to provide the reflected sound wave scattering and exclude its interaction with an incident light beam. No
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back sound absorbers were used. The optical surfaces had flatness less than λ/8 which was tested using probing

glass plate with flatness λ/9, and were antireflection coated for the Helium-Neon laser radiation. The reflection

coefficient measured was less than 1%.

The Bragg cell was fabricated with the constructive angle αN equal to 8.8°, which was chosen from the design

procedure to obtain the required efficiency and frequency response in the range of 85-115 MHz. Its transducer had a

surface S=3(L)×2 mm2 and its operating frequency ftr was equal to 97 MHz. It had been matched using the low pass

filter section as a matching network. Its elements L and C were chosen to obtain the best characteristic of voltage

standing wave ratio VSWR ( f ) in the frequency range 85 - 115 MHz. The measured characteristic in the 50 Ohm radio

channel is presented in Fig. 4.1. It has a bandwidth equal to 40 MHz (81 - 121 MHz) at the VSWR level of 2.55. A

measured phase ϕin(f) of the input reflectivity of the matching network depending on frequency is presented in Fig.

4.1, b.

4.2 Measurement of a phase response ϕ(f) of the equivalent opto-electronic quadripole

In this section, the techniques is considered to measure a phase response ϕ(f) of the equivalent opto-electronic

quadripole as it was defined in Section 1. Used definition has its advantages and disadvantages which will be

discussed in Section 4.2.3, but in the present work just such measurements have been carried out.
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Fig. 4.1 VSWR and phase ϕin(f) of the Bragg cell input reflectivity depending on frequency in the 50 Ohm radio channel.
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4.2.1 Conventional technique

On the first stage, the experiments were carried out with a conventional (ordinary) technique. A phase response

ϕ(f) (see its definition in the expression (1.1)) had been measured directly comparing input and output electric signal

phases by means of a RF phase meter. The experimental setup is presented in Fig. 4.2. It consists of an optical and an

electric parts. The optical part has an architecture similar to the Mach-Zehnder interferometer. A Bragg cell on TeO2 is

mounted in one of its branches. Another branch is used to obtain a reference light beam for optical heterodyning.

The light beam diffracted by the Bragg cell is added to the reference light beam using the beam-combiner. An output

lens (lens 2) collects both beams on the photodiode surface. To provide the polarization of the reference beam the

same as a polarization of a diffracted beam, a λ/2 plate together with a polarizer is used. A lens in the reference

channel (lens 1) provides a wave-front matching condition in a wide frequency range. A harmonic electric signal of

frequency f from the AO driver comes to the T-branch where it branches into the drive signal for a Bragg cell and the

reference one for the RF phase meter. Since a diffracted light frequency is shifted by frequency f relatively to

frequency of the reference beam, the photodiode output phase of frequency f can be compared with a phase of the

reference RF signal. Thus, when a frequency is changed within some frequency range, the phase meter output gives

directly a phase response of the equivalent opto-electronic quadripole ϕ(f), which was defined by the expression

(1.1).

In such a way pictures were recorded which displayed the dependencies ϕ(f) within very narrow frequency

ranges about frequencies 75 and 95 MHz (see Fig. 4.3). In the pictures, brightness from white to black shows a phase

changing within a range of ±180° which are the limits of the phase meter measured values. The x-coordinate displays

nothing: it is only connected with a way used to record a phase variations. Unfortunately, they display only some

qualitative features of a Bragg cell. As we will see below, there is no possibility to measure its quantitative

characteristics in this way.
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f
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beam

Photodiode

Phase output
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Drive RF
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Incident
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AO driver and

interface
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Lens 2
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(TeO 2)

 f
AO driver output,
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Fig. 4.2. Measurement setup using the Mach-Zehnder interferometer.
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Really, considering the pictures, one can see that there is a number of phase skips of the ±180° value (from black

to white) within a frequency range of 0.5 MHz. That is, a slope of a phase response is so steep that a slight frequency

change results in a significant change of an output phase. One can show that it happens mainly because of a sound

wave delay in a Bragg cell. Indeed, in Fig. 4.3 (b) and (c) pictures were recorded within the same frequency range. The

difference is only that the picture (c) was recorded when an incident light beam passed the Bragg cell at a distance d

from the transducer (see Fig 4.3) which was greater than in the picture (b). It is well seen that the greater a distance d

is, the steeper the slope of a phase response ϕ(f) is (a greater number of observed phase skips is). That is, we will

obtain different results recording those characteristics at slightly different frequencies f (and, of course, at different

d). Thus, the described effect will result in uncertainty in measured phase values at different frequencies unless the

special procedure is applied to count a number of phase skips during a continuos frequency variation. In the case of

arbitrary frequency samples as it is usually during digitizing, such a procedure is simply impossible.

In fact, the conventional technique allows to make necessary measurements only in a very narrow frequency

range. Thus, one has to change the way and the approach to measure a phase response ϕ(f). A new approach which

allows to measure it in the wide frequency range is described below.

At the same time, the experiment carried out gave some useful information. Fig. 4.3 (a) presents a picture

recorded at the same distance d as in (b). One can see that slopes of a phase response are different in these cases

(different number of skips), that is its slope depends on frequency in a wide frequency range.

4.2.2 Two-frequency technique

As it was shown above, it is impossible to measure a phase response ϕ(f) in a wide frequency range with the

direct conventional technique using a RF phase meter. But there is a possibility to avoid the "effect of phase skips"

measuring a group delay time instead of a phase. Therefore a new two-frequency method for measuring a Bragg cell

phase response ϕ(f) was developed which is based on this well known principle. Its basic advantages are:

1) to make measurements using an arbitrary frequency samples, i.e. to apply a standard digital techniques;

2) frequency translation of measured signals into a low frequency range allow to simplify a measurement equipment

and to increase a measurement accuracy.

3) one does not need to use a special high frequency photodiode (100 MHz).

A. Background of the method

95.5

95

f, MHz

75.5

75

f, MHz

75.5

75

f, MHz

(a)     d=d1 (b)     d=d1 (c)     d=d2> d1

Fig. 4.3. Displayed dependencies of an output phase on frequency. One can see a different number of phase skips at the
same frequency changes and different distances. d - a distance between a transducer and an incident light beam.
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It is well known that a group delay time τ in some linear system is connected with its phase response by the

following relation:

τ ω ϕ ω ω ω( ) ( ) /0
0

= d d , (4.1)

i.e., one can measure a group delay time τ(f) depending on frequency f within some frequency range flow, fhigh. In fact, it

is possible to measure directly a phase derivative dϕ(f)/df≈δϕ(f)/δf measuring a difference δϕ(f)=ϕ(f1)-ϕ(f2) at some

frequency difference δf =f1-f2, and then calculate a phase response ϕ(f) from the expression

ϕ
δϕ
δ

( )f
f

f
f

f

=
′

′∫ d
low

, (4.2)

where f′  is the dummy variable of integration. It is evident

that the characteristic ϕ(f) will be calculated up to a

constant, because the integral in (4.2) will be equal to zero

at frequency f=flow. Necessary conditions to properly

measure a characteristic ϕ(f) in this way are δ0ϕ<<δϕ and

δf<<f, δ0f<<δf, where δ0ϕ and δ0f are a measurement error of

δϕ and an error of a frequency set, correspondingly.

The simplest way to measure δϕ(f)/δf is to apply

simultaneously two signals with close frequencies directly

to a Bragg cell, then to mix two diffracted light beams on

the surface of a photodetector, to extract the signal of a

difference frequency δf  from its output, and finally, to measure its phase. But to be sure that a measured value is

exactly the same as in the case of ordinary (conventional) heterodyne architecture, we need to substantiate a

proposed approach.

Consider the simplest model describing signal conversions in a heterodyne system with a Bragg cell when there

are its two input signals with close frequencies f1 and f2 (Fig. 4.4). Incident light beam is diffracted by two sound

waves of those frequencies into two light beams E1 and E2. These beams propagate at slightly different angles to the

z axis and then are collected by a photoreceiver (e.g., by a photodiode together with some optical system) deriving an

output electric signal of frequency δf. Apparently, some additional phase difference δϕ0 should arise from that angle

difference. Let us calculate it.

Magnitudes of diffracted light waves  E1 and E2 can be written in form [3,4]

E 1,2 lght 1,2 B s= − + − + +exp( [( ) ( / ) ]), ,
i t K x Dω ω ϕ1 2 1 2

2 , (4.3)

where ωlght is a cycle light frequency, ω1,2=2πf1,2, K1,2 - sound wave numbers, ϕS1,2 - initial phases of sound waves.

Then, having taken the all light to be collected by a photoreceiver, one finds a complex analytical output signal

f1, f2

-D/2

D/2

E1

E2
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Fig. 4.4 The model to calculate an output signal phase of a
difference frequency δf.
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u E x E x x

i i s s i f f D v
f f D v

f f D v

D

D

out 1 B 2 B Bd= =

= − − −
−

−

−∫ ( ) ( )

exp[ ( )] exp[ ( )] exp[ ( ) / )]
sin[( ) / ]

( ) /
,

*

/

/

2
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1 2 1 2 1 2
1 2

1 2

ω ω ϕ ϕ π
π

π
(4.4)

where E1 and E2 are complex magnitudes of diffracted light waves, v is a sound velocity. The first exponential term

here simply displays a fact that an output signal is harmonic of frequency δf. The second one shows a difference

between two sound wave phases. But the third term is exactly that which is connected with a way we obtain an

output signal, i.e. the phase addition δϕ0 arising because of the angle difference of the diffracted light wave

directions:

δϕ0=(f1-f2)πD/v , (4.5)

This is a constant error of the method. As it is seen from the expression (4.5), it is directly proportional to a frequency

difference δf  and a delay time τB=D/v of sound wave in a Bragg cell. Therefore one needs to chose δf smaller to reduce

the constant error, or it must be taken into account in calculations of measured values.

The last term in the expression (4.4) (of form sinx/x) represents the condition similar to one known in the optical

heterodyning theory [2] as a condition of wave-front matching: the less a frequency difference is (i.e., the less an

angle between two diffracted light beams is), the more an output signal is.

Thus, from all the reasons, it is necessary to take a frequency difference δf as small as possible.

B. Measurements

To practically realize the developed method, a special experimental setup was constructed which is presented in

Fig. 4.5. Its optical part included a tested Bragg cell, He-Ne laser (0.633 µm), two lenses, and a photodiode together

with a prime-amplifier as basic elements. Laser output power was 1 mw, the light beam diameter on the output mirror

was equal to 0.8 mm. There were also used some additional elements: attenuators, space filters and a telescope as

they were needed. One of the back and front focal planes of two lenses were joined. A Bragg cell and a photodiode

were located in the other planes. Such a configuration transferred a Bragg cell scanning center onto the surface of a

photodetector. That is, a photodetector did not need to be moved while a drive frequency f changed. Thus, a

possibility was realized to measure a Bragg cell phase response within a wide frequency range not having changed

positions of all optical elements.
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The electric part was designed so to take the low frequency (50 kHz) reference signal equal to δf directly from the

input of a Bragg cell. Under this condition, a measured phase response had to be exactly as one defined by the

expression (1.1). Two synthesizers of direct synthesis were used in the two drivers of a Bragg cell (AO drivers), so

that their output frequencies had an accuracy and stability of quartz. One of the output frequencies (the basic one)

was equal to a given frequency f, and another one was shifted from that by the frequency δf=50 kHz.

Two output signals of AO drivers came onto an adder, and then a summed signal, passing an output power

controls, was branched into a Bragg cell directly and into a detector. Thus, the detector was located directly at the

Bragg cell input. The detector output of difference frequency δf was used as a reference signal for a specially

designed digital phase detector.

An output signal of frequency δf from a photodetector was the measured signal. Within an arbitrary frequency

range which could be chosen anywhere from 65 to 130 MHz, 512-frequency samples were given by a special program

on IBM PC. The program also simultaneously controlled AO drivers and the measurement system. A 2D array, of

given frequencies f and measured values of δϕ, was obtained as a result.

The experimental setup was calibrated and tested. It was established that within a frequency range of 75-125

MHz, a phase difference δϕ was measured with accuracy of  ±3°.

The same experimental setup was used to measure a Bragg cell efficiency η(f)=I1/Iin depending on frequency.

Here Iin is an incident beam efficiency, I1 is an efficiency of the first diffraction order. The shifted frequency channel

was made to be turned off when the frequency response (FR) η(f) of the fabricated Bragg cell was measured. It is

presented in Fig. 4.6 (curve 2). It was measured at the input electric power of 130 mw to achieve a maximum efficiency

equal to 0.89. Curve 1, Fig. 4.6 shows the characteristic calculated in Section 3. The Bragg cell was designed for an

efficiency of 0.9 and the bandwidth 81-116 MHz at this efficiency value. Calculated and measured results are shown

to be in a good agreement. The real Bragg cell had the minimum efficiency equal to 0.86 within the bandwidth of 81.7-

114.2 MHz , i.e. its FR had non-uniformity of 4%.
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Fig. 4.5.The measurement setup using two frequency technique.
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For phase measurements, a Bragg cell position was fixed so that

the η(f) characteristic of Fig. 4.6 was maintained the same, and then

dependencies δϕ(f) were measured. Dependencies ϕ(f) were calculated

using (4.2) and taking into account the constant error δϕ0 according to

(4.5) (it was subtracted from measured δϕ(f) values). Results obtained at

different parameters of acousto-optic interaction are presented below.

In Fig. 4.7 characteristics at different input power levels Pin are

presented which were obtained at the diameter of a laser beam of about

1 mm. They are practically identical except some differences within the

frequency range 88-98 MHz and above 120 MHz. It was found out, the

first difference is connected with features of a used detector. The second difference arises because of a low intensity

of diffracted light beam at small input power Pin =10 mw at frequencies above 120 MHz, practically beyond the Bragg

cell bandwidth. Thus, one can definitely claim that measured phase responses do not depend on input power

From that reason all further measurements were carried out at the same input power equal to 50 mw.

Note also that the plot for characteristics ϕ(f) is made in terms of radians for y-axis. It shows that the measured

slope of a Bragg cell phase response is very steep, in the order of 9000 deg/MHz. Exactly the same was qualitatively

perceived in Section 4.2.1. Obviously, such a steepness is mainly determined by a sound wave delay in the Bragg

cell.

Fig. 4.8 shows the results obtained at different positions of an incident light beam related to the transducer, i.e.

at different distances d (see Section 4.2.1). As earlier, dependencies δϕ(f) were measured, then characteristics of the

delay time τ(f) and ϕ(f) were calculated using (4.1) and (4.2). As in the previous case, the diameter of an incident light

beam was equal to ≈1 mm for curves 1-3, and had the equivalent size of 4 mm for the curve 4. Curve 1 was obtained at

some distance d=2-4 mm (it was not measured exactly). Curves 2 and 3 were obtained at exact distances d1= d+2 mm

and d2= d+3 mm (with accuracy of ±0.02 mm). The curve 4 was obtained when an input telescope was mounted just

after the laser.
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C. Discussion of the obtained results

One can see from Fig. 4.8 that obtained dependencies are identical except a different slope of phase responses.

Obviously, mainly it occurs because of a different sound wave delay in the Bragg cell and its different apertures and

does not matter in most applications. In practice however, that can result in some problems when two various Bragg

cells are used in the same opto-electronic system. Really, if one of them is used in the reference channel instead of a

lens (see Fig. 4.2) to create a number of reference beams as it is described in [1, p. 114], and has an aperture different

from a Bragg cell aperture used in the signal channel, then a considerable phase dependence on frequency can arise

in an output signal of a photodetector. Apparently, it will be linear, but in fact, result can be uncertain in some cases

which were investigated in Section 2.

It is also important to note, that obtained results demonstrate an explicit dependence of a delay time τ on

frequency (see Fig. 4.8, b). One can surely say, this fact is unexpected and requires a discussion. Really, there seems

to be no reason why it should be. The experimental setup was carefully calibrated and tested. Theory [8, 11, 14, 15]

also does not give any predictions. Therefore some additional measurements were necessary to clarify the situation.

They were carried out and the results are presented below. Prior to consider them, let us return for a moment to the

common approach formulated in Section 1.

As follows from the definition of a phase response ϕ(f) (see expression (1.1)), the measurements described

above were carried out comparing complex input and output signals Uin(f) and Uout(f). That is, an input signal was

directly used as a reference. In this case, a measured value δϕ would have some phase additive error δϕerr(f) if there

existed a frequency dependence of the input signal phase. Such a dependence has to undoubtedly exist because the

input VSWR of the investigated Bragg cell is not exactly equal to unit over the frequency range and the input

reflectivity phase ϕin(f) obviously depends on frequency (see Fig. 4.1). In other words, the input signal depends on

the input impedance Zin(f) of a Bragg cell: Uin=Uin(f, Zin). Apparently, to exclude the effect, a directional coupler could

be applied instead of a T-branch in the measurement scheme of Fig. 4.5. Then the direct wave Udrct(f) would be used

as a reference whose phase does not depend on the input impedance Zin(f). In addition, if the observed frequency

dependence δϕ(f) were only determined by a reference phase dependence, then the effect should disappear (of

course, if there were no distortions of phase response of a directional coupler). The modified part of the measurement

scheme in this case is shown in Fig. 4.9, a. It is a desirable modification, but there was used a different one in the

experiment (Fig. 4.9, b): instead of a directional coupler, an attenuator was used between a T-branch and a Bragg cell.
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Fig. 4.8. Measured characteristics δϕ(f) at different distances d of an incident light beam from the transducer. The delay time
τ(f) and phase responses ϕ(f) were calculated using (4.1) and (4.2). The diameter of the beam is equal to ≈1 mm for curves 1-
3, and ≈4 mm for the curve 4. The curve 1 was obtained at some distance d, the curves 2 and 3 at distances  d1= d+2 mm and

d2= d+3 mm. Input power Pin =50 mw.
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Of course, in this case a reference Û(f1,f2,Zin) also depends on a Bragg cell input impedance Zin(f), but this dependence

is reduced because of the attenuator. A degree of the reduction is determined by an attenuation value.

As described, measurements were made repeatedly. The results are presented in Fig. 4.10. An incident beam

diameter was approximately equal to 4 mm (see also Fig. 4.8, curve 4). Attenuators with the attenuation of 6 dB (curve

3) and 10 dB (curve 1) were used. Curve 2 describes a case when attenuation was equal to zero. There is clearly seen

a smoothed frequency dependence of a measured δϕ(f) value: the greater an attenuation is (curve 1), the more smooth

the curve is. It is evident that observed non-uniformities of measured dependencies δϕ(f) are really determined by a

character of frequency dependence of the input impedance Zin(f). It is also confirmed from a comparison of curve 2 in

Fig. 4.10,a, with a curve in Fig. 4.10,c which is the same characteristic ϕin(f) as in Fig. 4.1,b, but presented in a form

convenient for comparison. Visible correlation between them is well seen. It also should be noted, the aforesaid is

related to frequency dependencies but not to absolute measured values of δϕ. Observed difference in them (see Fig.

4.10, a) which has led to a difference in phase responses ϕ(f) (see “a fan” in Fig. 4.10, b), apparently is connected with

different phase features of used attenuators. At the same time, a linearity of curves 1 and 3 (with attenuators) is much

better than of curve 2 (with no attenuators).

Thus, one can certainly claim that observed non-uniformities in measured dependencies δϕ(f) are connected

with the used approach and definition of a phase response according to the expression (1.1). The measurement

procedure has been constructed to obtain exactly a phase response ϕ(f). A consequence of that is that obtained

values of a delay time have become strongly depending on the input impedance of a Bragg cell, i.e. on frequency.

Correspondingly, and a phase response ϕ(f) itself has become nonlinear. To conclude, whether the applied definition

is suitable or not, one can only considering a concrete case of a Bragg cell application in practice.

Directional
coupler

Power
control

Bragg cell

Uin(f1, f2,  Zin)

Udrct(f1, f2)

f1, f2

f1, f2

Detector
δf=f1-f2

a

Bragg cell

f1, f2

Attenuator

Power
control

T-branch

f1, f2

Detector
δf=f1-f2Ûin(f1, f2, Zin)

Uin(f1,  f2, Zin)

b

Fig. 4.9. Modifications which are to be made in the measurement setup presented in Fig . 4.5; a - desirable
modification; b - modification used in the experiment.
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power Pin =10 mw for curve 1 and 50 mw for curves 2 and 3;
c - phase of the Bragg cell input reflectivity depending on
frequency in the 50 Ohm radio channel.



24

4.3 Measurement of a Bragg cell wave-front distortions

As it is clear from the results presented above, sound decay and truncation of an incident light beam in a Bragg

cell did not practically affect the output photocurrent phase. But irregular wave front perturbations in the

photodetector plane, if exist, can result in considerable phase distortions of an output signal. For this reason it is of

great interest to investigate in a direct way the uniformity of a diffracted beam. In this section we present an analysis

of wave front sensing, having a common use in adaptive optics, as applied to a Bragg cell phase distortions.

A first technique could be applied is to deduce the phase ϕ from the intensity distribution in the focal plane.

The distribution for a point source is the point spread function which is the Fourier transform of the optical transfer

function. This inverse problem is so-called phase problem in optics [16]. There is no unique solution in the general

case, and measurements and/or a priori constrains must be used. The Gershbery-Saxton iterative algorithm is the

basic principle of the technique [17]. The main drawbacks of these methods are the requirement of really point source

which is difficult to provide in practice, and the computing time.

The most popular optical techniques to sense the wave front is based on the interferometric methods. There is a

lot of methods based on interferometry. The principle is to form a fringe pattern between the beam coming from the

test object and the beam coming from the reference mirror. The main disadvantage of the device in a Bragg cell

testing is the requirement for the identity of reference and tested beam frequencies. Because of diffracted wave

frequency shifting, observed fringe pattern is unstable, and its registration is difficult. In addition, the restoration of

phase distribution is complicated by speckle in formed interferogram.

A very powerful approach to the problem is direct wave front testing by means of sensors widely used in

adaptive optics. This technique is used now for testing mirrors and lenses, in remote sensing and ophthalmo logy. It

permits not only direct wave front measurements, but real-time correction of its distortion, as well. As the wave-front

measurement method we adopted the Hartmann-Shack sensor [18,19] which is optimal for testing large-aperture

optical devices. The main advantages for wave front measuring with Hartmann-Shack sensor are as follows. First, in

contrast to interferometric methods, one can produce a reference beam quite easy by simple telescopic system with

spatial filtration in a focal plane. Second, because wave front distortion is in inverse proportion to the magnifying

power, the larger the beam aperture becomes, the higher the measurement accuracy can be obtained. Third, because

Hartmann-Shack sensor measures the local wave front slope, one can achieve a wave-front correction directly by

wave front control, using individual actuators on a deformable mirror or liquid-crystal spatial light modulator.

In this section, we give the brief description of optical setup used in our investigation, and the analysis of main

measurement errors of the device. The results received with the designed Bragg cell on TeO2 and a short discussion

concludes the section.

4.3.1 Measurements using a Hartmann-Shack wave-front sensor

A. Background of the method

The principle of the Hartmann-Shack wave-front sensor is well known [19]. A lenslet array is placed in a

conjugate pupil plane in order to sample the incoming wave front. If the wave front is plane, each lenslet forms an

image of the source at its focus. If the wave front is disturbed, a lenslet received an inclined wave front and forms an

image out of axis in its focal plane. The measure of the image position in the first approximation gives directly the

angle of the wave arrival for each space point where the lenslet is placed.
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An attractive feature of this sensor is the simultaneous determination of the X and Y slopes by the measurement

of the image position. The local slopes of the tested wave front ψ(x,y) can therefore be detected from the

relationships

∂ψ
∂

∂ψ
∂

( , ) , ( , ) ,x y
x

x
F

x y
y

y
F

= =∆ ∆
(4.6)

where F is the focal length of the lenslets and ∆x, ∆y are the shifts of focus spots in the X- and Y-directions,

respectively.

Usually, the Hartmann-Shack wave-front sensor requires the use of a reference plane wave, generated from a

reference source in the instrument, in order to calibrate precisely the focus positions of the lenslet array. A number of

methods can be used to measure the positions of the spots formed by the lenslets. The simplest technique is to use a

quad-cell detector for each subaperture. But more precise results can be obtained using a CCD camera as a detector

to record simultaneously all the images. An estimation of the spot position can be given in this case by the

determination of its center-of-gravity:

∆x x I I= ∑ ∑ij ij
i, j

ij
i, j

/ ;     ∆y y I I= ∑ ∑ij ij
i, j

ij
i, j

/ (4.7)

where Iij and (xij, yij) are the signals and the positions of the pixel (i, j), and the sum is made over all pixels of the

subaperture devoted to a given lenslet.

Wave front reconstruction from the measured local slopes constitutes an inverse ill-posed problem and

generally can be made by its orthogonal expansion [19]. Generally, the simplest method to solve it is based on the

determination of pseudo-inverse matrix with the help of singular value decomposition procedure. We suppose to use

the method for this purpose of optimal orthogonal expansion based on generalized eigen functions of forming

operator [20].

B. Experimental setup

Fig. 4.11 shows an optical system developed to measure a Bragg cell distortion. The system consists of a He-Ne

laser, (λ=0.6328µ), collimators 1 and 2, beamsplitters 1 and 2, optical shutters, which permits to project objective and

reference beams independently, CCD device with scaling video-system, which transform video-signals into 8-bit

images of the size 684x512 pixels, and Hartmann- Shack wave front sensor HSS.
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The microlens array is one of the most important elements of Hartmann-Shack wave-front sensor. We have

developed a long-focal-length holographic lenslet array of 19x13 lenslets. The lenslets of the array have a focal length

of 80mm and dimensions of 0.5 mm in diameter. The use of diffraction optics offers some advantages over the

conventional refraction one: holographic lenslet arrays are easier to manufacture, less expensive, and can be

produced with the variety of main parameters. Wave aberrations of holographic lenslet fall outside of the significant

values (~λ/20 over the pupil 10x10mm in the range of local wave slopes ±20 minutes of arc, see below), and the

chromatic aberrations are of no concern because of monochromatic laser light use. The average diameter of a formed

spot in the focal plane was approximately 80µm on the one-half intensity level. This matches well with the sizes of an

individual CCD cell (~9×8.3 µm), and no additional magnification

was required.

The system operates as follows: laser radiation is attenuated

by polarizer attenuator to the proper level, and spatially filtered by

collimator 1 with a pinhole in a focal point of reducing optics.

Received plane wave is split on two beams by beamsplitter 1. The

first wave illuminates wave front sensor and is used to form

reference spots. The second wave is deflected by a Bragg cell

being investigated, and, after proper reduction by a beam

expander, forms an image frame in the plane of a CCD camera. The

spatial filter PH blocks the 0-order of a Bragg cell. The shifts of the

diffracted wave spot centers related to the reference beam  are

detected by CCD camera and processed by an image processor

using PC. Since the detected image in Hartmann-Shack sensor consists of only a number of focused spots, the

signal-to-noise ratio in the image plane is high enough, and the sensitivity of the sensor is quite sufficient to satisfy

the permissible exposure conditions.

A typical array of spot images is shown in Fig. 4.12. A small fluctuation in the peak intensity does not degrade

the measurement accuracy in a treatment process that determines individual center positions of focal spots because

only the energy centers are calculated.

C. Estimation of the centroid error of spots

Iris stop

He-Ne laser Bragg cell

Collimator 1 Beamsplitter 1 Shutter 2

Shutter 1

Mirror 1

Mirror 2

Collimator 2 Beamsplitter 2 HSS

Polarizer
attenuator

CCD
camera

PH

Filter

Fig. 4.11. Optical setup of Hartmann-Shack sensor.

Fig. 4.12. A part of Hartmann-Shack image for a
typical wave front
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Fig. 4.13. Additional aberrations of inclined wave.
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The centroid position of an image spot fluctuates from air turbulence, optics vibration, instability in laser

intensity, and noise in CCD detector units. Because the centroid position relates directly to the local wave-front

slope, the measurement accuracy is limited by the centroid errors. It is of great importance to estimate these errors

and to reduce them as far as possible.

It should be noted that except random errors due to the factors pointed out above, the systematic errors can

occur in estimated centroid positions as well. The main sources of systematic errors are the aberrations of diffraction

lenslets, the misalignment of reference and object wave fronts, the inclination of a plane of a CCD camera detector,

etc. In our experiments we estimated such errors in indirect way. To estimate the errors due to wave aberrations of

holographic lenslets we use the plane wave-front precisely inclined to the plane of lenslet array. For aberration-free

lenslets the estimated tilt has to be equal to the origin one, and the rms aberrations σ in excess over the pupil have to

be vanishing. Fig. 4.13 shows the aberrations of inclined wave front measured in the range of ±20 minutes of arc. One

can see that wave aberrations due to holographic lenses do not exceed λ/20 (the total value of phase difference

averaged over the pupil 10x10mm is ~13λ, thus the relative error comes to only 0.3% and is of no importance).

 Random errors due to spot fluctuations were estimated by following procedure. Fig. 4.14 shows centroid

fluctuations for five spot images among five-frame data without integration in the image processor. The standard

deviation of the spot center is about (in pixels) 0.039 in x-

direction and 0.044 in y-direction for the spots in the center

of a frame, and  about 0.071(x) and 0.040(y) for the

peripheral spots.

To calculate the corresponding error in a

reconstructed wave front and reduce it, the data from a few

spot frames of the same wave front were processed by

inverse filtration, and the restored wave fronts (phase

distributions over the pupil) were averaged. Then the

standard deviation of the restored wave fronts from an

averaged one was calculated, and it gave the estimation of a

random error in the reconstructed wave front. Typical graph

of measured average aberrations (plane wave scanned by a
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Fig. 4.14. Centroid unevenness for centered a) and peripheral b) spots
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Fig. 4.15. Measured aberrations for wave front scanned by
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Bragg cell) with estimated rms errors are shown in

Fig. 4.15. It is evident from the results that resulting

random errors do not exceed ~λ/50, that is

comparable with the best devices of this type

[21,22].

D. Experimental results and discussion

We have carried out two groups of

experiments with especially fabricated Bragg cell on

TeO2, which was designed in Section 3. In the first

one, we have used a Bragg cell-input beam to

produce the reference frame of the spots. The

optical system is so adjusted that the reference

wave front and tested wave front at the central

operating frequency of the analyzed frequency range falls normally on the lenslet array. This scheme permits to

measure absolute aberrations of diffracted wave in relation to an incident light beam. The trouble is, that the reference

and object wave fronts may be shifted in the plane of a lenslet array, and if the reference wave is not exactly plane,

the additional artificial aberration may be registered.

The second group of experiments was performed using a diffracted wave on a central frequency as a reference

beam. With this scheme, because the reference and the distorted beams pass through exactly the same optical path,

optical aberrations in the measuring system are due to a Bragg cell distortions only. Therefore the aberrations of

deflected wave front can be measured precisely, but yet these data are only relative, referring to the distorted

diffracted wave front at 100 MHz.

The results obtained are shown in Fig. 4.16 where the contour phase maps are plotted over the performance

aperture of exit pupil of a Bragg cell, in millimeters. Corresponding standard deviation of phase distortion as a

frequency function are shown in Fig. 4.17. As might be expected from previous considerations, average phase

distortion was appreciably higher for external reference beam, where uncontrollable phase errors may occur.

Because of data processing limitations, we were

not able to register phase distribution over the whole

wide frequency range simultaneously, therefore, we had

performed measurements in three narrow frequency

subranges. The results are shown in Fig. 4.18. We have

not noticed the significant dependence of phase

distortion on frequency. The only statement can be

done with assurance that standard deviation of

diffracted wave front varies within narrow (but

detectable) limits with frequency variations.

Nevertheless, detected phase distortions are in

significant excess of systematic and random errors of the

device, and hence, they are directly related with

a)

b)

c)

1 2

Fig. 4.16. The contour maps of wave aberrations of diffracted
beam, 1)-with external reference beam, 2)-with reference beam at
f=100 MHz; a)-f=99 MHz, b)- f=100 MHz, c)- f=101 MHz. All

lines are plotted at λ/10 intervals. Real sizes are 5.5x2.5 mm
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irregularities in diffraction process. On the other hand, the absolute values of these distortions are rather small to not

affect the output photocurrent phase. It means that carefully designing and fabricated a Bragg cell does not need any

special reduction of spatial phase distortions.

Having no possibility to measure phase distribution of diffracted wave overall the operating range of a Bragg

cell, we have performed research on phase distortions in the 0-order of diffraction (its wave front tilt does not change

with frequency variance). It is well known, that 0- and 1-order modes in a Bragg cell are tightly coupled, hence, any

phase variations in diffracted beam can cause some phase change in non-diffracted wave. The results are shown in

Fig. 4.19. As the reference beam was taken the direct wave passing the Bragg cell with no sound intensity.

It can be said with assurance that variations in phase map with frequency variation is directly coupled with

frequency response (FR) of the Bragg cell. The corresponding FR is presented in Fig. 4.20 and displays an 0-order

intensity dependence on frequency and, hence, corresponding phase variations in 1-order diffraction. As it is

evident, these variations are well-correlated: the maximum standard deviation of phase distortion corresponds to

limits of FR, as exemplified by the graphs of FR and standard deviation of phase distortion in the 0-order. It is

essential to conduct further investigations to make more detail conclusions of physical and technical significance of

this effect.
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Fig. 4.18. Standard deviation of phase distortion in diffracted
beam for three frequency subranges (reference beam is an
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Fig.4.19 The contour maps
of wave aberrations of the 0-
order of a Bragg cell. All
lines are plotted at λ/10
intervals. Real map's format
is 5.5x3.7 mm. The
transducer is to the right.
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5. Conclusion

Phase characteristics of a Bragg cell in an optical coherent signal processing system are investigated. In Section

1, a conversion of signals by a Bragg cell is considered, and a definition of its phase response (PhR) as an equivalent

opto-electronic quadripole characteristic is introduced.

In Section 2, an influence of a Bragg cell on an output phase of a heterodyne optical system is investigated

using a numerical simulation. It is stated that a Gaussian beam truncation by a Bragg cell and sound decay does not

practically affect an output photocurrent phase if there are no irregular perturbations of diffracted wave-front. Such

perturbations can be caused, for example, by a Bragg cell optical non-homogeneity, technological errors during its

fabrication, or thermal effects. In this case an output phase will depend on as irregularity types as a photodetector

size. Especially, phase distortions become appreciable when that size makes a part of a light spot size. That may be

important in case when a diode array is used, and reference probes are narrower than a signal mainlobe. When the

photodetector size is greater than a spot one, an averaging occurs and output phase distortions decreases to zero.

Thus in practice, a Bragg cell influence has to be appreciable only in a system with a number of photodetectors per

spot ≥2.

Criteria to design a Bragg cell with small phase distortions are formulated in Section 3. A principle used as a

basis is to minimize an absorbed acoustic power since it causes thermal distortions. A connection has been analyzed

of the proposed criterion with basic Bragg cell parameters: an aperture, efficiency, resolution. A Bragg cell on TeO2

for light wavelength 0.633 µm with operating frequency 100 MHz (bandwidth ~ 30 MHz) and efficiency 0.9 has been

designed. A design example of a GaAs Bragg cell for light wavelength 1.55 µm with the same operating frequency is

presented. It is shown that it can be more effectively used in a much higher frequency range.

In Section 4 experimental investigations are carried out of a specially fabricated Bragg cell on TeO2 designed in

Section 3.The fabricated Bragg cell had the bandwidth 81.7-114.2 MHz on the minimum efficiency level of 0.86 with

non-uniformity of 4% (above the efficiency 0.86) at the input electrical power equal to 130 mw. Its input VSWR was

less than 2.55 within the bandwidth.

Its phase characteristics in an optical heterodyne system have been measured. It is shown that conventional

approach based on the use of a Mach-Zehnder interferometer and a RF phase meter is not suitable to measure phase

response in an overall frequency range because of its steep slope. A new two-frequency technique is proposed to

make such measurements. The idea is to use two signals with slightly different frequencies simultaneously, and to

measure a phase of a difference frequency signal extracted from the photodetector output. In the experiment there

was used a frequency difference equal to 50 kHz. The photodetector size was much larger than a focused light spot.

Using this technique, phase response were measured within the range of 75-125 MHz at different input powers

(from 10 to 100 mw). There was found no dependence of phase response on power but its considerable nonlinearity

was discovered, and correspondingly, essential dependence of delay time on frequency was found. It is shown that

observed dependence is connected with used approach to define and measure a phase response as “the inserted

phase response” of an equivalent quadripole. In this case, the output phase is measured relative to a phase of a

Bragg cell input signal which is considered as a reference. Therefore a measured phase difference becomes

dependent on a Bragg cell input impedance. If this dependence has excluded, then the dependence of output phase

on frequency is disappeared as well. What that means for practice one could conclude only considering a concrete

Bragg cell application in an opto-electronic system. Thus, in a certain sense, one can say the experiment confirmed
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that in a heterodyne system a Bragg cell does not practically distort a phase response if the photodetector size is

much larger than a light spot.

Also in Section 4 wave-front distortions of a Bragg cell were measured as in the first as in the zero order using a

Hartmann-Shack sensor. The estimated accuracy of measurement was not worse than λ/50. Distortions within three

narrow subranges (84-86, 99-101, 114-116 MHz) had been measured in the 1st diffraction order. There was found no

dependence of wave-front distortions on frequency within the overall range. Nevertheless, detected phase

distortions within subranges are in significant excess of systematic and random errors (they are in the order of λ/40),

so that they are apparently connected with irregularities in diffraction process. Their absolute values are rather small

to not affect an output photocurrent phase in heterodyne system in common case. At the same time, measurements in

the zero order show that in overall operating range there are appreciable distortions (in the order of λ/25), which can

be possibly observed in the 1st order too. They can certainly to affect an output phase if a photodetector size is less

than a light spot. In this case one can expect that an unavoidable frequency dependent phase noise will arise in the

output causing a dynamic range reduction.

It should be also noted, that in testing optical systems, wave-front distortions inserted by a Bragg cell can

significantly deteriorate their parameters.

Thus, the basic results of the work are as follows:

1. A Bragg cell in a heterodyne (coherent) signal processing system does not insert any appreciable phase

distortions into an output signal unless a photodetector size is less than a light spot one.

2. Otherwise, such distortions can offer and be appreciable causing an unavoidable frequency dependent phase

noise and a dynamic range reduction.

3. In testing optical systems a Bragg cell wave-front distortions can cause a deterioration of system parameters.

From the aforesaid follows that further experimental investigations using a photodiode array are useful and

necessary to learn vividly real limitations of considered opto-electronic system application.

Obtained results have been partly presented at the ICA/ASA '98 meeting, (Seattle, USA, June 20-26, 98), and

also have been accepted for presentation at the 8th International Crimea Microwave Conference CriMiCo'98

(Sevastoplol, Ukraine, 14-17 Sept.), and at the International Conference "Optical Storage" - OS'98 (Kiev, Ukraine, 28

Sept.-2 Oct.).
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